Monoamine oxidase-B mediates ecstasy-induced neurotoxic effects to adolescent rat brain mitochondria.
نویسندگان
چکیده
3,4-Methylenedioxymethamphetamine (MDMA)-induced neurotoxicity and the protective role of monoamine oxidase-B (MAO-B) inhibition were evaluated at the mitochondrial level in various regions of the adolescent rat brain. Four groups of adolescent male Wistar rats were used: (1) saline control, (2) exposed to MDMA (4 x 10 mg/kg, i.p.; two hourly), (3) treated with selegiline (2 mg/kg, i.p.) 30 min before the same dosing of MDMA, and (4) treated with selegiline (2 mg/kg, i.p.). Body temperatures were monitored throughout the whole experiment. Animals were killed 2 weeks later, and mitochondria were isolated from several brain regions. Our results showed that "binge" MDMA administration causes, along with sustained hyperthermia, long-term alterations in brain mitochondria as evidenced by increased levels of lipid peroxides and protein carbonyls. Additionally, analysis of mitochondrial DNA (mtDNA) revealed that NDI nicotinamide adenine dinucleotide phosphate dehydrogenase subunit I and NDII (nicotinamide adenine dinucleotide phosphate dehydrogenase subunit II) subunits of mitochondrial complex I and cytochrome c oxidase subunit I of complex IV suffered deletions in MDMA-exposed animals. Inhibition of MAO-B by selegiline did not reduce hyperthermia but reversed MDMA-induced effects in the oxidative stress markers, mtDNA, and related protein expression. These results indicate that monoamine oxidation by MAO-B with subsequent mitochondrial damage may be an important contributing factor for MDMA-induced neurotoxicity.
منابع مشابه
Ecstasy-induced oxidative stress to adolescent rat brain mitochondria in vivo: influence of monoamine oxidase type A.
The administration of a neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') to the rat results in mitochondrial oxidative damage in the central nervous system, namely lipid and protein oxidation and mitochondrial DNA deletions with subsequent impairment of the correspondent protein expression. Although these toxic effects were shown to be prevented by monoamine oxidase B inhi...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملAcetyl-L-carnitine provides effective in vivo neuroprotection over 3,4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain.
3,4-Methylenedioximethamphetamine (MDMA, ecstasy) is a worldwide abused stimulant drug, with persistent neurotoxic effects and high prevalence among adolescents. The massive release of 5-HT from pre-synaptic storage vesicles induced by MDMA followed by monoamine oxidase B (MAO-B) metabolism, significantly increases oxidative stress at the mitochondrial level. l-Carnitine and its ester, acetyl-l...
متن کاملBiochemical effects of the monoamine neurotoxins DSP-4 and MDMA in specific brain regions of MAO-B-deficient mice.
Previous studies reported that drugs acting as monoamine oxidase (MAO)-B inhibitors prevented biochemical effects induced by the neurotoxins N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) and 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"). In this study, we administered DSP-4 (50 mg/kg) or MDMA (50 mg/kg x 2, 2 h apart) to MAO-B deficient mice. Monoamine content in various brain regi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 38 شماره
صفحات -
تاریخ انتشار 2007